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Abstract 
 
The mathematical interaction between the simultaneous rotation of both a coordinate frame and a 

set of physical vectors in that frame is covered and theoretically and empirically explained. A 

practical example related to the secular motion of the pole is addressed. A least-squares 

adjustment is introduced to determine a possible displacement of the geodetic north pole of the 

frame caused by plausible changes in the coordinates of the observing stations defining the frame 

due to the rotation of the plates on which these stations are located. Two GPS network examples 

are investigated using the latest definition of the IGS08 geodetic frame, which was obtained 

exclusively using GPS data, as published by the International GNSS Service (IGS). The first 

network is the global GPS/IGS network, and the second one is a GPS/ILS-type single latitude 

network. The results of this exercise hints at the possibility that the secular global rotation of the 

frame caused by plate rotations should be accounted for in order to rigorously determine the true 

velocities of the rotation of the plates. 

 
Keywords: Rotation of frames; Euler pole of rotation about arbitrary axes; Secular motion of the 

pole; Zero-net rotation; Least-squares adjustment   
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Introduction 
 
The earth is formed by a group of rigid or quasi-rigid crustal tectonic plates moving individually 

with time. Consequently, geodetic reference frames are materialized by the coordinates of a set 

of core stations at a certain epoch and their corresponding linear velocities. Therefore, the 

residual changes of the three-dimensional position of these fiducial stations with time could 

introduce a small but detectable virtual secular motion of the reference frame itself. In this paper 

the angular variation with respect to time of the axes of the currently adopted geodetic reference 

frame due to plate rotations is investigated. Historically, the secular (non-periodic) angular 

displacement with respect to time of the z-axis of the frame (the so-called terrestrial motion of 

the CIP ≡  “Celestial Intermediate Pole”, see Petit and Luzum 2010, p. 174) has been termed 

“secular motion of the pole.” To quantify the secular motion of the pole produced by the 

displacement of the frame defining stations due to plate motions, the most recent GPS-

determined geodetic frame was used. The International GNSS Service (IGS), every now and then, 

produces geodetic reference frames based on a set of global stations observing 24/7 the GPS 

constellation of satellites. The latest released frame of the series is the IGS08 (for the year/epoch 

2005) and it is based on a set of 231 core stations where the (x, y, z) coordinates and their 

associated (vx, vy, vz) velocities are accurately known.    

    The first aim of this exercise will be to determine what would be the secular motion of the 

polar axis of the IGS08 frame e.g. during a period of 50 years as a consequence of the 

displacements with time of the points defining the frame due to the rotation of the plates on 

which they are located. A least-squares (LS) procedure was introduced to rigorously determine 

the angular rotations of the secular motion and their corresponding variance-covariance (v-c) 

matrix. Thereafter, these angular values are converted into linear units to visualize the actual 

displacement on the earth’s surface of the CIP and the Terrestrial Intermediate Origin (TIO, the 

origin of longitudes, see Petit and Luzum 2010, p. 179). 

    The difference between active and passive rotations is then addressed complementing the 

theoretical framework with a practical example based on the effect of plate tectonics on the core 

points defining the geodetic frame. 

    Subsequently, the Euler pole generated by these global rotations is determined and its secular 

contribution to the plate rotation velocity field quantified.     
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Secular motion of the pole caused by the motion of the observing stations  

Assume that the original coordinates of the IGS08 core stations are denoted by (x, y, z). Then, 

after 50 years the value of the new coordinates ( , , )x y z   could be written as: 

0{ } { } { }; ( ) { } { }
x

y

z

x x dx x v
x x dx y y dy y v t t x v dt

z z dx z v

         
         = + = + = + − = +         
                  



 



   (1)  

 
where, for this particular exercise, t – t0 = dt = 50 years. 
 
    The mathematical model required to compute the angular displacements of the pole after 50 

years, assuming differential rotations, is simplified as (see Soler 1998): 
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                                                                                                          (2) 
 
    The above equation has implicitly two assumptions: 1) the three rotations 1 2 3, ,δα δα δα  

respectively about the three original Cartesian axes (x, y, z) are differentially small, and 2) 

counterclockwise (anticlockwise) rotations about the three axes are positive. The letter i is an 

index identifying the station in question. The general form of the proper orthogonal rotation 

matrices of the form ( )j θR ,  j = 1, 2, 3 materializing a counterclockwise rotation of coordinate 

axis was given in Kaula (1966; p. 13). The rotation matrix subscripts indicate rotations about the 

first, second, and third axis, respectively. The angular argument θ  represents the magnitude of 

the rotation, which can be any finite angle. Explicit matrix forms of each representative 

counterclockwise rotation of an angle θ about each one of the three axes are well known 

(Mueller 1969, p. 80). Successive rotations are operated in a sequential manner from right to left. 

Generally, the product of two or more rotation matrices is not commutative, however, the 

arguments of the rotations contained in (2) are differentially small and in this particular case they 

fulfill the commutative law. Therefore, one can write, assuming all possibilities:  
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   Notice that (2) implies that an arbitrary point P remains fixed in space while one set of axes is 

rotated counterclockwise by amounts 1 2 3, ,δα δα δα . Figure 1 shows that although the point 

remains fixed in space its coordinates before and after the rotations are different; { }x is the 

column vector of coordinates before the rotation and{ }x is the column vector of coordinates after 

the rotation referred to the new rotated frame ( , , )x y z   . As the figure indicates both sets of 

coordinates apply to the same point P which remains fixed in space. 

 
Fig. 1 Coordinates of a fixed point P in space before and after a frame rotation 

 

    From (2) immediately follows that the differential changes to the original coordinates due to a 

differential counterclockwise rotation of axes are: 
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    Consequently, if one is given a set of three rotations 1 2 3, ,δα δα δα  and wants to compute the 

differential effect due to three clockwise rotations about the same three axes, equation (4) takes 

the form: 

3 2

3 1

2 1

0
0 [ ]{ }

0
i

i i

x x
y y x
z z

δ δα δα
δ δα δα δα
δ δα δα

−    
    = − =       −     

      (5) 

were xδ , yδ , and zδ are the displacements of the point due to a clockwise rotation. Clearly, in 

this case, x xδ δ= − , y yδ δ= − , and z zδ δ= − . 

 

Least-squares procedure to determine 1 2,δα δα and 3δα  
 
Equation (2) could be explicitly written: 
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         (6) 

 
    Using a least-squares methodology, the above expression conforms with a general implicit or 

mixed model of the type F(L, X) = 0 where the symbol L denotes observations and X parameters 

or, equivalently, unknowns (see Leick 1995, p. 116). Therefore, equation (6) expressed as an 

implicit functional relationship, assuming i = 1, 2, 3 …n, where n denotes the total number of 

points used in the analysis takes the following form: 
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n n n n n

F x y z x
F x y z y
F x y z z
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        (7) 

    But according to (1), 



6 
 

i

i

i

xi i

yi i

zi i

x x v dt
y y v dt
z z v dt

= +

= +

= +







          (8) 

    Therefore, substituting (8) into (7) one finally arrives at: 
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    Clearly, the three unknowns that one wants to estimate are the counterclockwise differential 

rotations 1 2 3, ,δα δα δα  around the three (x, y, z) axes, respectively. The two sets of observation 

vectors at our disposal are the original coordinates of the points{ }T
ix y z and the corresponding 

linear site velocities at each point{ }T
x y z iv v v  at one given epoch. 

    The design matrix A  is computed according to the following well-known matrix expression 

that contains the partial derivatives with respect to three parameters p, in this particular case, 

1 1p δα= , 2 2p δα= , and 3 3p δα= : 
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where  X0, L0, indicates the initial values for the parameters and the observations, respectively. 

Similarly, the design matrix B  is computed as: 
 

1 1 1

1 1 1

1 1 1

1 1 1 1 1 11 1 1 1 1 1

1 1 1

2 2 2 2 2 2

1 1 1

3 3 3 3 3 3

1 1 1

,0
3 6

    

n n nn n n x y zx y z

x y z

x y z

b
n n X L

F F F F F FF F F F F F
x y z v v vx y z v v v

F F F F F F F
x y z v v v

F F F F F F
x y z v v v

F
L×

∂ ∂ ∂ ∂ ∂ ∂∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂ ∂∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂ ∂

∂
=
∂

 
 
 
 
 
 
 
 
  

=



B

1 1 1

1

2 2 2 2 2 2

3 3 3 3 3 3

3 2 3 2 3 2 3 2 3 2 3 2

1 1 1

3 1 3 1 3 1 3 1 3 1

1 1 1

n n n

n n n

n n n

n n n

n n n n n n

n n n n n

x y z

x y z

x y z

x

F F F F F
x y z v v v

F F F F F F
x y z v v v

F F F F F F
x y z v v v

F F F F F
x y z v

− − − − − −

− − − − −

∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂

 
 
 
 
 
 
 
 
  

  

1 1

1 1 1

3 2 3 2 3 2 3 2 3 2 3 2

3 1 3 1 3 1 3 1 3 1 3 1 3 1

3 3 3 3 3 3 3

1 1 1

n n n

n n n

n n n n n n

n n n

n n n n n n n

n n n

n n n n n n n

n

x y z

y z x y z

x y z

F F F F F F
x y z v v v

F F F F F F F
v v x y z v v v

F F F F F F F
x y z v v v x

− − − − − −

− − − − − − −

∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂ ∂ ∂

 
 
 
 
 
 
 
 
  



3 3 3 3 3

n n n

n n n n n

n n x y z

F F F F F
y z v v v

∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂

 
 
 
 
 
 
 
 
 
 
 
 

  
  
  
  
  
  
  
  
          

3 2

3 1

2 1 1

3 2

3 1

2 1

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

n

dt
dt

dt

dt
dt

dt

δα δα
δα δα
δα δα

δα δα
δα δα
δα δα

− −    
    − −    
 − −      
 

=  
 − −        − −    − −        



  



 

                                                                                                                               (11) 
 
The so-called “closure vector” W  takes the explicit form: 
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W        (12) 

 
    The quantities 0 0 0

1 2 3, ,δα δα δα are the initial approximate values of the rotations that are been 

estimated. In this investigation all initial rotations were assumed to be equal to zero. The same 

values were used in (11). The solution converged after three iterations.  

    To compute the matrix 1−P  required in any LS formalism (see (17)) one needs the v-c 

matrices of the original IGS08 observed coordinates and velocities, that is: 
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−
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 P       (13) 

 

where the cross-correlations between coordinates and velocities of different stations was 

assumed to be equal to zero, namely: 

 

( )
3 3

       [0] 
x x x xi j i jj i i jx x x v v x v v i j

×
≠= = = =Σ Σ Σ Σ       (14) 

 

    The value of 2
0σ  is the a priori variance of unit weight that in this work was assumed equal to 

one. The required values of the matrices in (13) are given in the SINEX file provided by the IGS, 

however, they contain “formal statistics”, also described as “formal errors”, and therefore they 
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are perhaps slightly optimistic and not representative at a certain level of accuracy of the real 

behavior of the physical-geometric model involved in the GPS-processed multiyear solutions. 

Using similar reasoning to the one introduced in Soler et al. (2012) to scale optimistic stochastic 

models generally available to us in raw GPS SINEX files, the final value of the inverse of the 

weight matrix was modified as follows:   
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[0]

1

x

x

n n xn

xn

T T
x x x x x v v

T
v v v

T T
x x x x x v v

T
v v v

n n

symsym

sym
sym

σ

× ×
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−
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P    (15) 

where: 
 

3 33 3
x xs

××
=J I   and  

3 33 3
v vs

××
=J I           (16) 

   
    The two multipliers xs and vs used to scale the original v-c matrices of the coordinates and 

velocities were selected to be 200 and 350, respectively (see later the “Data used” section.) Then, 

using the standard least-squares methodology, to get the solution the following set of matrices 

was calculated (Leick 1995):  

 

-1

-1

-1

-1

-1ˆ
ˆT

T

T

T

−

− −

M = BP B
N = A M A
U = A M W
X = N U
V = P B M(W AX)

         (17) 

The v-c matrix for the estimated parameters and the a posteriori variance of unit weight can be 
obtained respectively by: 
 

2 1 2 1 1
0 0ˆ ˆ ˆ ( )T

X
σ σ− − −= =Σ N A M A         (18) 
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where 
 

2
0ˆ

3 3
T

n
σ =

−
V PV

           (19) 

 
 
Relationship between angular and linear units to represent the displacements of the pole 
 
Historically, the displacements around the north pole are represented using a local two-

dimensional Cartesian frame denoted ( , )p px y (see Mueller 1969, p.82; McCarthy and Luzum 

1996) where px  and py  are the so-called “polar coordinates” of the displaced (rotated) third axis 

of the IGS08 frame caused by the motion of the stations-- in the case at hand, assumed 

exclusively caused by plate rotations-- with respect to the position of the original IGS08 frame 

during the interval dt = 50 years. Incidentally, the value of dt could have been selected equal to 

one year. The results are linear and could have been extrapolated to a period of 50 years giving 

the same results. The selection interval of 50 years was mainly selected for cosmetic reasons in 

order to obtain final angular results larger than 1 mas (milliarcsecond). To convert the pole 

displacements from the computed angular units to linear units, one assumes the local frame on a 

plane tangent to the mean earth’s geocentric ellipsoid (GRS80) at the point of intersection of the 

original IGS08 frame third-axis with this rotational ellipsoid. A comprehensive view of the 

angular relationship between the original frame and the rotated frame is 

provided in Figure 2. 

 
 

( ) 08
, ,

IGS
x y z ( ) 08

, ,
IGS

x y z  
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Fig. 2 Basic rotations between the frames and  caused by plate motions 
at the IGS08 core stations. The local linear coordinates px  and py  of the displaced polar axis are 
also shown. The figure is not drawn to scale. CM = earth’s center of mass 
 
 
    Following the standard definition of the ( , )p px y local frame, that is, the axis px is parallel to 
the 08IGSx  axis, represented symbolically by 08p IGSx x  and, similarly, 08p IGSy y− , the following 
equalities could be written: 
 

0

0

0

90 1 1

2 290 3 3

3 3
0

0 0

0 0

0 0

p

p

p

My
x M

N

ϕ

ϕ

ϕ

δα δα
δα δα

λ δα δα

=

= ×

=

             = =     
      

       

H      (20) 

 
In the above equation the value of pλ indicates the approximate displacement in linear units 

along the earth’s equator of the secular motion of the origin of longitudes. This approximation 

assumes that the equatorial plane of the initial IGS08 frame 08( , , ) IGSx y z is equal or very close to 

the equatorial plane defined by the rotated 08( , , ) IGSx y z    frame. The symbols M  and N  represent 
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, ,

IGS
x y z ( ) 08

, ,
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the values of the principal radius of curvature along the meridian and prime vertical respectively, 

computed at the specified geodetic latitudes in (20) assuming a two-parameter ellipsoidal earth. 

These principal radii of curvature could be computed according to the well-known equations (see 

Soler et al. 2012):   

 
2

2 2 2 2 2
3

(1 ) ; ; 1 sin ; 2a e aM N W e e f f
W W

ϕ−
= = = − = −     (21) 

 
In the above equations, a and f denote the semi-major axis and flattening of the selected 

reference ellipsoid, respectively. For all computations performed herein the so-called Geodetic 

Reference System ellipsoid of 1980 (GRS80) was adopted: a = 6,378,137 m, exact; f ≈  

1/298.257222101 (Moritz 1992).  

The values of  M  and N  particularized to the latitudes shown in (20) gives: 
 

0 090 02
;

1
aM N a

eϕ ϕ= =
= =

−
         (22) 

  
The results from (20) are more accurate that the standard procedure of assuming a spherical earth 

where 0.001" 3cm≈ on its surface. From (20) the full v-c matrix of the displacements of the pole 

(in linear units) as determined from recent GPS observations defining the IGS08 frame 

immediately follows: 

 

{ } { } { }1 2 3 1 2 3, , , ,, ,p p p

T
y x δα δα δα δα δα δαλ

= =Σ HΣ H HΣ H       (23) 

 
 
Data used 

 In this investigation the coordinates and velocities of the IGS08 core stations defining the IGS08 

reference frame at epoch t0 = 2005.000 were used as the starting values. The stochastic model, 

that is, the v-c matrices required in the diagonal blocks of (13) were extracted from the IGS08 

SINEX file. The location of the IGS08 core stations are plotted in Figure 3 against the  
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Fig. 3 Circles and squares depict the 231 core stations defining the IGS08 geodetic frame. The 
closest IGS stations to the old ILS astronomical observatories are represented by squares 
 

background of tectonic plates available at the URL: http://peterbird.name/publications/ 

2003_PB2002/2003_PB2002.htm. To be discussed later, the figure also depicts the five stations 

from the IGS08 set closest to the astronomical observatories belonging to the now defunct 

International Latitude Service (ILS). The ILS was an international organization created in 1899 

to monitor the complicated motion of the path of the instantaneous earth’s axis of rotation on the 

surface of the earth (Höpfner 2000; Yokoyama et al. 2000).  Using classical astronomical 

techniques, and zenith telescopes, five observatories located approximately on the same parallel 

( ϕ  = 39o 08’) determined the variation of latitude over time. The main reason why the 

observatories were selected along the same parallel was to assure, as much as possible, that any 

important systematic errors (e.g. errors in star catalogues, etc.) were common to all data 

processing methods performed at each observatory. At the time it was not known that the latitude 

of each station was affected by small variations due to the individual rotation of the plates.  As a 

result of this effort the ILS produced a precise general plot of the wobble of the earth on its 

rotation axis (Chandlers’ wobble) and even detected a still unexplained secular motion of the 

pole. These observatories ceased to operate in 1982 when new, more accurate, spatial geodetic 

techniques were developed and fully implemented. It should also be stressed that while the ILS 

was operational a comprehensive theory of lithospheric plate tectonics was not well known. In 

this investigation to recreate as much as possible a potential virtual secular motion of the pole 

http://peterbird.name/publications/%202003_PB2002/2003_PB2002.htm
http://peterbird.name/publications/%202003_PB2002/2003_PB2002.htm
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originated by the rotation of the plates at the ILS observatories, the IGS08 GPS-sites closest to 

the original ILS telescopes were also independently studied. Table 1 presents the approximate 

coordinates of the five IGS08 core stations closest to the ILS observatories that were used in this 

exercise tabulated by ascending longitude (positive towards east). As mentioned above, the 

actual geographic locations of these five IGS08 stations are depicted by squares in Figure 3.  

 

Table 1 Coordinates of the five IGS08 core stations closest to the old ILS astronomical 
observatories. Longitude is assumed positive east 
 

ILS Stations Nearby  
IGS 

Station 

Plate Longitude  
(d-m-s) 

Latitude  
(d-m-s) 

CARLOFORTE 
(Italy) 

CAGL EU 08-58-21.91 39-08-09.28 

KITAB (Russia) KIT3 EU 66-53-07.60 39-08-05.16 
MIZUSAWA (Japan) TSKB EU? 140-05-14.99 36-06-20.45 

UKIAH (USA) QUIN NA 239-03-20.06 39-58-28.40 
GAITHERSBURG 

(USA) 
USN3 NA 282-56-01.41 38-55-14.03 

 
     

The values of the coordinates {x} and velocities {v} of all core stations defining the IGS08 frame 

at epoch 2005.00 are given at the Web site ftp://igs-rf.ign.fr/pub/IGb08 under the file name 

IGb08.ssc. To see the data corresponding to the coordinates and velocities of the 231 core 

stations, scroll down in the file to “SOLUTION/ESTIMATE”. Notice that under some station names 

may be several entries with coordinate values very close to each other; they are the result of 

various GPS solutions processed using different spans of time. For this investigation a unique set 

of (x, y, z) coordinates for each station was selected, the one containing the minimum standard 

deviations. Additionally, as mentioned earlier, the original v-c matrix (formal statistics) extracted 

from the SINEX file is usually too optimistic. Multipliers must be decided in order to scale the 

mostly optimistic stochastic model. As already was announced in Section 3, after (16), in this 

study, two multipliers sx = 200  and sv = 350 have been obtained empirically by constraining  the 

a posteriori variance of unit weight to be close to unity. This will guarantee a much more 

reasonable stochastic model ensuing a more realistic uncertainty estimates for the determined 

parameters well in accordance with the proposed general least-squares approach. 

 

ftp://igs-rf.ign.fr/pub/IGb08
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Results using all available IGS08 stations 

 
Using the available coordinates { }ix and velocities { }iv and the stochastic model defined by (15), 

the variation with respect to time of the original spatial orientation of the frame IGS08 were 

computed after implementing the least-squares procedure described in Section 3. The 

counterclockwise rotations 1 2 3, ,δα δα δα  and their uncertainties required to physically rotate the 

frame { }ix  into { }ix , triggering a new realization caused by the change in coordinates of the 

IGS08 stations due the rotation of the plates, were determined. The results are shown in Table 2 

where the equivalence, 1 mas = 1 milliarcsecond = 0.001”, has been used.  

 

Table 2 Virtual secular motion of the IGS08 frame after applying to the 231 core stations 
defining this frame the observed plate velocities during a period of 50 years 
 

Global Rotations Secular Polar Motion IGS08 

1δα  -1.151 ±  1.798 (mas) py  -0.036 ± 0.056 (m) 

2δα  16.070 ± 1.809 (mas) px  0.499 ± 0.056 (m) 

3δα  -16.348 ± 1.954 (mas) pλ  -0.506 ± 0.060 (m) 

{ }1 2 3, ,δα δα δαΣ  
3.2326 0.0688 0.4300
0.0688 3.2709 0.1370

0.4300 0.1370 3.8171

− 
 − 
  

(mas2) { }, ,p p py x λ
Σ  

0.0031 0.0001 0.0004
0.0001 0.0031 0.0001

0.0004 0.0001 0.0036

− 
 − 
  

(m2) 

0ˆ 1.3633σ = ; { } { }1 2 3, , , ,

1 0.0211 0.1224
0.0211 1 0.0388

0.1224 0.0388 1
p p py xδα δα δα λ

− 
 = = − 
  

ρ ρ  

 

     

    Table 2 presents the values of the angular displacements of the original IGS08 frame after 

applying the displacements caused by the given secular velocities (mostly attributed to plate 

rotations) to the original coordinates of the stations during a period of 50 years. In order to better 

visualize these displacements in linear units, Figure 4 represents, using dashed lines, the secular 

magnitude and orientation of the displacements at the earth’s pole and equator with 
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corresponding error ellipse and error bars. Recall that the variation of the IGS08 original frame is 

dependent on the selected core stations. To this restriction one should add the fact that the 

stations are located on different tectonic plates which rotate under various Euler rotation poles. 

Clearly, it is plausible to envisage an ideal combination of stations and plates that may provide 

the “best” definition of the frame. To dramatize this fact, in the following section the same theory 

and computational approach is applied when only the five IGS sites closest to the old ILS 

observatories are considered.  

   

Results using only the five IGS08 stations which are closest to the former ILS astronomical 

observatories. 

     

Table 1 shows the actual IGS08 stations closest to the old ILS observatories used. Notice that 

they are located between the band of north latitudes 36o 06’ and 39o 58’ and that only two plates 

are involved, the Eurasian plate (EU) and the North American plate (NA). Actually, Mizusawa is 

located in the confluence of the Eurasian plate with several microplates thus being very difficult 

to exactly ascertain to what plate this particular station belongs (see Figure 3). 

    Using only these five stations and the same least-squares procedure described before, the 

results of Table 3 were obtained. As expected, the secular rotations (or displacements) are not as 

well defined as before because only five stations, primarily located on only two different plates, 

are involved. 

 
 
Table 3 Virtual secular motions of the IGS08 ≡ ILS frame after applying to the five close-to-ILS 
stations the observed plate velocities during a period of 50 years 
 

Global Rotations  Secular Polar Motion ILS  

1δα  12.408 ± 10.902 (mas) py  0.385 ± 0.338 (m) 

2δα  36.028 ± 11.952 (mas) px  1.118 ± 0.371 (m) 

3δα  -3.954 ± 11.490 (mas) pλ  -0.122 ± 0.355 (m) 
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{ }1 2 3, ,δα δα δαΣ  
118.8636 1.6255 1.1446

1.6255 142.8604 3.7672
1.1446 3.7672 132.0274

 
 
 
  

(mas2) { }, ,p p py x λ
Σ  

0.1144 0.0016 0.0011
0.0016 0.1375 0.0036
0.0011 0.0036 0.1262

 
 
 
  

(m2) 

0ˆ 0.6271σ = ; { } { }1 2 3, , , ,

1 0.0125 0.0091
0.0125 1 0.0274
0.0091 0.0274 1

p p py xδα δα δα λ

 
 = =  
  

ρ ρ  

 

    By comparing the results from Tables 2 and 3 it is evident that due to the difference in the 

number of stations used, the resultant v-c matrices of the modern more exhaustive and low-cost 

GPS methodology is, perceptibly, much more accurate that the classical astronomical procedure 

relying only on five observatories. That’s why, in essence, the ILS organization was disbanded. 

The traditional astrometric techniques using zenith telescopes were replaced by new geodetic 

space methods, among them the GPS-based procedures which are the ones exclusively relied 

upon in this investigation.  

    The results are plotted in Figure 4 using the standard nomenclature and orientation of the px  

and py  axes originally adopted by the ILS organization.  The figure shows that the polar axis of 

the IGS08 frame will have a virtual secular motion of about 0.50 m in 50 years, practically along 

the zero-meridian, as a consequence of the displacement of the core stations defining the frame 

due largely to plate rotations.  It is appropriate to note that this virtual secular motion of the pole 

will change depending on the selected stations and their location on the tectonic plates (fast 

moving vs slow moving). This is corroborated by the second example showed in the figure 

corresponding to the case where only the five ILS stations are considered. Notice that the 

direction and the magnitude of the displacement are different. The secular motion of the pole for 

the ILS case coincides very well with previous results published in Soler and Mueller (1978) that 

used modeled plate velocities that were introduced by Solomon et al. (1975).  Of all the different 

plate models that these authors postulated to compute tectonic plate velocities the results 

presented here for the ILS stations coincide best with their model B4: continents have 3 times 

more drag than oceans. Recall that no accurate real measurements of tectonic plate rotations 

were available at that time. However, the newly determined error estimates of the computed 

direction and magnitude of the ILS inferred secular polar motion determined here encompasses 
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other models described in Solomon et al. (1975) (see Soler and Mueller 1978). Another related 

conclusion is that the detected virtual secular motion of the pole for a period of 50 years could 

not be attributed to glaciation effects and is mainly due to plate rotations. The glaciation 

hypothesis to explain the so-called wandering of the pole was commonly used before the global 

tectonic theory was introduced but although it may make sense for time periods of thousands of 

years it may not explain intervals of only 50 years as the one addressed in this exercise. 

    Furthermore, it is also plausible to assume that the historically detected small random changes 

in the direction of the path of the secular motion of the pole could be related, as Figure 4 implies, 

to the specific number of stations used at certain periods of time and their particular location on 

the tectonic plates.  A more consistent average in the determination of the secular motion of the 

pole is obtained when the number of observing stations is increased and they are evenly 

distributed over the surface of the earth.  

    Recently, several scientific teams have produced tectonic plates velocity models based on 

observed geodetic and geophysical data, e.g. Goudarzi et al. 2014. The most comprehensive 

bibliographic information as well as the availability of handy Web-based plate calculators can be 

reached at the following URL:   

http://www.unavco.org/community_science/science-support/crustal_motion/dxdt/model.html 
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Fig. 4 Displacements on the surface of the earth’s ellipsoid of the pole  and equatorial axis
 attributed to plate motions during a period of 50 years affecting the core 231 IGS08 and 

the 5 IGS/ILS-type stations 
 

Effect of the secular motion of the frame on IGS08 core stations 

Before proceeding further, a few points need to be clarified which otherwise could generate 

confusion when one mixes up in the same practical procedure rotation of frame axes (points 

remain fixed, frames move) and rotation of vectors (frame remains fixed, vector moves). This is 

also referred to in the literature as “passive” and “active” rotations, respectively (Soler 1998; 

Millot and Man 2012). 
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    The authors believe that to avoid any possible misunderstandings when rotations are involved 

in any mathematical derivation the sign convention defining the rotations should be as consistent 

as possible. That is the main reason for selecting herein counterclockwise (anticlockwise) 

rotations of axes to be always positive. Therefore, every time that a rotation of an axis is 

performed, counterclockwise rotations are assumed positive. Consequently, the definition of the 

basic equation of a general rotation about an arbitrary axis needs to be addressed first as it is 

traditionally used in physics, and especially dynamics. The basic equations here refer to rotations 

of vectors, also referred to as active transformations or body rotations.  

    The formulation for active rotation of axis was originally introduced by Euler (1775) and 

revived a century later by Thomson and Tait (1879). In the abbreviated matrix notation of this 

work, the rotation matrix of the transformation takes the form: 

 
2( ) [1] sin [ ] (1 cos ) [ ]α α α= + + −  R                              (24) 

 
Notice that in (24) no assumption about the magnitude of α , the angle of rotation, was made, 

0 2α π≤ ≤ . Furthermore, according to the matrix nomenclature advocated in this article the 

skew-symmetric matrix [ ]  is explicitly given by:  

 

3 2

3 1

2 1

0
[ ] 0

0

 
 
 
 
  

−
= −

−

 

  

 

         (25) 

 
Equation (24) represents a counterclockwise rotation of magnitude α  about an axis of direction 

cosines 1 2 3, ,   . Assuming now that the angle of rotation is differentially small, equation (24) 

reduces to: 

 

3 2 3 2

3 1 3 1

2 1 2 1

2

0 1
0 1

0 1

( ) [1] sin [ ] (1 cos ) [ ] [1] [ ]

[1] [1] [ ]
δα δα δα δα

δα δα δα δα
δα δα δα δα

δα δα δα δα

δα

=

− −   
   = − = −   
   − −   

= + + − +

+ + =

   R

   (26) 

                                                                                 
    The final matrix in (26) is opposite in sign to (2) although both equations were derived 

assuming counterclockwise rotations positive. However, in (2) the rotations are taken about the 
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three Cartesian axes and the points remain fixed in space (see Figure 1), while in (26) the frame 

axes remain fixed and the vectors (points) are rotated (body rotation). Figure 5 depicts the 

parameters involved in a so-called active rotation. 

    Therefore, the transformation of the original coordinates{ }ix referred to the frame (x, y, z) due 

to a counterclockwise differential rotation of magnitude | |δα δα≡


around a vector δα


with 

components ( 1 2 3, ,δ δδα α α ) could be written: 

 
3 2

3 1

2 1

0
{ '} ( ){ } [1] [ ] { } 0

0
i i i

i i

x x
x x x y y

z z

δα δα
δα δα δα δα

δα δα

−     
    = = + = + −    
    −     

  R     (27) 

 
and the differential contribution to the original coordinates { }ix  caused by a counterclockwise 

rotation of vectors will be: 

 
3 2

3 1

2 1

0
0 [ ]{ }

0
i

i i

x x
y y x
z z

δ δα δα
δ δα δα δα
δ δα δα

−    
    = − =       −     

       (28)  

 
    The comparison of (2) and (28) summarizes conceptually the difference between differential 

counterclockwise rotation of axes and differential counterclockwise rotation of vectors, 

respectively. In most treatises of mechanics, the theory of rotations rotates the body (rotation of 

vectors, active rotations) as opposed to rotate the coordinate axes. Therefore, practically, 

equation (24) is used.  This is also the case when plate tectonic rotations are invoked.  

    The rotation of coordinate axes started to be popularized at the dawn of the artificial satellite 

era when transformation between three-dimensional geodetic frames was originally postulated. 

The first serious investigation treating this particular subject was published by Lambeck (1971). 

This author, perhaps, to be consistent with the standards adopted by classical mechanics 

textbooks, selected counterclockwise rotation of axes as positive. This rotation convention 

remained unperturbed among geodesists until Boucher and Altamimi (1996), decided to switch 

the formulation used by the IERS to clockwise rotation of axes positive creating, in the process, 

confusion (see Soler 1997). Stressing further this point, the rotation of axes should be assumed 

counterclockwise positive to be consistent with a general body rotation about an arbitrary axis as 
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used today in dynamics and, particularly, by geophysicists investigating plate tectonic theories. 

Therefore, although both rotations are counterclockwise positive it is important to distinguish if 

the rotation is applied to the axes of a Cartesian frame (points remain fixed, Figure 1) or to 

vectors (frame remains fixed, Figure 5), because their matrix formulation is opposite in sign.  

 

 
Fig. 5 Parameters defining Euler axis of rotation 

 

  Assume now that the IGS08 reference frame has a secular motion defined by the three 

counterclockwise rotations around the axes as derived from the results presented in Table 2. 

From the three counterclockwise rotations computed above caused by the individual plate 

velocities at each station for a period  = 50 years, one immediately can determine the rates of 

the rotations according to: 

 

 =   -1.151 (mas)    -0.0230 (mas/yr)  

 =   16.070 (mas)    0.3214 (mas/yr)     (29) 

 =  -16.348 (mas)    -0.3270 (mas/yr)  
 
    Remember that the above positive counterclockwise rotations were derived assuming rotations 

around the three axes. This could also be interpreted as an average “global” rotation that if 

dt

1δα 1 1 / dtδα δα= =

2δα 2 2 / dtδα δα= =

3δα 3 3 / dtδα δα= =

y  

z  

x  

{ }'x  

1δα  

2δα  

3δα  

{ }x P 
2δα  

2 2 2
1 2 3= + +   δα δα δα δα  

φ  

λ  
1δα  

3δα  


δα  

1 

1l  

2l  

3l  
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neglected could change with time the coordinates of the 231 IGS08 core stations. Clearly, this 

global rotation could be explained as the least-squares average secular rotation of the IGS08 

frame resulting from the velocities of all stations, each one moving constrained by the rotation of 

the individual tectonic plate on which they are located. 

    Equation (28) could be converted into a dynamic-type equation by inserting the values of (29) 

and replacing the displacement of the coordinates by velocities, namely: 

 

3 2

3 1

2 1

0
0

0
i i

x x
y y
z z

δα δα
δα δα
δα δα

−    
    = −       −     

 

 

 

        (30) 

 

Notice that the rotation is counterclockwise but now one is rotating vectors (active rotation). The 

above resulting velocities are referred to a local (topocentric) IGS08 Cartesian frame that could 

be transformed into a local (topocentric) geodetic frame east, north, up (e, n, u) as follows (Soler 

et al 2012): 

 

sin cos 0
cos sin sin sin cos

cos cos sin cos sin
i

i i ii

e x x
n y y
u z z

λ λ
λ ϕ λ ϕ ϕ
λ ϕ λ ϕ ϕ

−       
      = = − −      
             

  

  

  

R     (31) 

 

The results of (31) for the ( ,e n  ) components referred to the local geodetic horizon plane are 

plotted at each point i in Figure 6.  
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Fig. 6 Velocities at the 231 IGS08 stations caused by a global counterclockwise rotation of   
vectors of magnitude δα and components 1δα , 2δα , 3δα . The two symbols indicate the top 
and the tail ⊕ of the Euler vector axis 

 

    Exactly the same results for the velocities could be obtained using (27) in conjunction with the 

original coordinates, namely: 

( ){ } ({ '} { } ) / ( ){ } { } /i i i i ix x x dt x x dtδα= − = −
 R       (32) 

where the rotation matrix ( )δαR could be computed using the general (24). 

The spherical longitude and latitude of the Euler axis are determined as follows (see Figure 5): 

2 2

1 1

arctan arctanδα δαλ
δα δα

   
= =   

   




        (33) 

3 3
2 2 2 2
1 2 1 2

arctan arctanδα δαφ
δα δα δα δα

   
   = =
   + +   



 
      (34) 

and the angular rate of rotation: 

2 2 2
1 2 3dt

δαδα δα δα δα= = + +            (35) 

    The numerical values of λ , φ , and δα in the above three equations, after inserting the 

quantities from Table 3, are presented in Table 4. The standard deviations of the two angles given 

the orientation of the Euler axis and the counterclockwise angular rotation rate δα  were obtained 

using the standard propagation of errors formulation, namely: 



25 
 

{ } { }1 2 3

2

2
, , , ,3 3 3 3

2

T

sym

λ λφ λδα

φ φδαλ φ δα δα δα δα

δα

σ σ σ
σ σ

σ
× ×

 
 = = 
  



   



Σ J Σ J       (36) 

where, 

2 1
2 2 2 2
1 2 1 2

2 2
1 21 3 2 3

22 2 2 2 2 2
1 2 3 1 2 1 2

31 2

0

( , , )
( , , )

δα δα
δα δα δα δα

δα δαδα δα δα δαλ φ δα
δα δα δα δαδα δα δα δα δα δα

δαδα δα
δα δα δα

 − + + 
 +∂  = = − −

∂  + +
 
 
  

J

 

   

    

        

 

  

  (37) 

The positive intersection of the Euler’s axis (the tip of the vector) with the surface of the earth is 

represented in Figure 6 by the symbol  while the tail of the vector is denoted by ⊕ . Notice that 

the rotation, as usually defined, is counterclockwise positive. 

 

Table 4 Euler Pole parameters with pertinent companion statistics 

Euler Pole and Angular Rates Size and Orientation of Error Ellipse 

λ =94o 05’ 53.6326” ±  8 o 42’ 13.7950” ae = 8o 44’ 6.6903” = 974.0126 (km) 

φ = -45o 25’ 01.3227” ±  6 o 30’ 8.8148” be = 6o 27’ 36.9342” = 718.0544 (km) 
δα = 0.4591 ±  0.0506 (mas/yr) 

eaA = 97 o 13’ 32.5905” 

{ }, ,

75.7567 4.3135 0.0474
4.3135 42.2818 0.0250

0.0474 0.0250 0.0026
λ φ δα

− 
 = − − 
 − 

Σ  (deg2, mas2/yr2) 

{ }, ,

1.0000 0.0762 0.1075
0.0762 1.0000 0.0761

0.1075 0.0761 1.0000
λ φ δα

− 
 = − − 
 − 

ρ  

 

The standard formulation to compute in angular units the semi-major and –minor axes of the 

error ellipse was used. The angular units were converted into linear units according to the 

following equations: 
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2 2

2 2
1 cos sin

cos sinA
A

A A MNR
R M N N A M A

= + ⇒ =
+

      (38) 

Where, AR is the radius of curvature on the surface of the earth’s ellipsoid along an azimuth A 

counted positive clockwise from the geodetic north. 

The value of ϕ  that should be used above to compute M  and N  as noted in (21) could be 

computed from the following equation: 

2
tantan
1 e

φϕ =
−

           (39) 

Finally: 

 

0

0
a

b

e e

e e

linear radians
units

Ra a
b bR

α

α

    
=     

     
         (40) 

The direction cosines of the Euler axis, if necessary, follow immediately from (Figure 5): 

1

2

3

cos cos 0.0502
cos sin 0.7001

sin 0.7122

φ λ
φ λ
φ

−     
     = =     
     −     







        (41) 

Considering that in this particular case the assumption is that the counterclockwise rotation of 

vectors is differentially small, then (32) simplifies as follows: 

( ){ } ({ '} { } ) / ( ){ } { } /

[1]{ }

i i i i ix x x dt x x dt

x

δα= − = −

=


 R

2

0

sin [ ]{ } (1 cos )[ ] { } { }i i ix x xδα δα
≈

+ − − − 


3 2 3 2

3 1 3 1

2 1 2 1

/

0 0
[ ]{ } 0 0

0 0
i

i i

dt

x x
x y y

z z

δα δα δα δα
δα δα δα δα δα

δα δα δα δα

 
 
  

− −       
      = = − = −      
      − −       

    

      

    

  (42) 

As expected, the above equation is identical to (30) found before. Thus, the global rotation 

generated by these three frame rotations could also be quantified by determining the longitude 

and latitude of an axis (Euler axis) going through the center of the earth and the magnitude of the 

angular rotation around this axis. Consequently, the velocities at any point caused by the rotation 

of a tectonic plate model could be calculated using two approaches depending of what type of 

parameters are given. If the variation with respect to time of the three components of the angular 



27 
 

rotation is given, then (30) could be used. If the longitude and latitude of the Euler’s axis and the 

value of the angular rotation around this axis are known then the direction cosines approach also 

graphically displayed in Figure 5 should be implemented.  

Alternative direct computation of the three Euler pole parameters 

From (42) a new independent mathematical model could be established according to the 
following equation: 
 

3 2

3 1

2 1

0
0

0

x

y

z i i

v x
v y
v z

δα δα
δα δα
δα δα

−     
    = −    
    −     

  

  

  

       (43) 

 
Expressed, as before, in the form of mixed math model F(X, L)=0, after substituting the direction 
cosines from (41) above one can write the following functional relationships: 
 

1

1

1

1 1 1

2 1 1

3 1 1

3 2

3 1

3

: sin cos sin 0
: sin cos cos 0

: cos sin cos cos 0

: sin cos sin 0

: sin cos cos 0

: cos sin cos cos

n

n

n

x

y

z

n x n n

n y n n

n z n

F v y z
F v x z

F v x y

F v y z

F v x z

F v x

φδα φ λδα
φδα φ λδα

φ λδα φ λδα

φδα φ λδα

φδα φ λδα

φ λδα φ

−

−

+ − =
− + =

+ − =

+ − =

− + =

+ −

 

 

 



 

 

 0nyλδα =

      (44) 

 
Then, according to (10) considering that now the parameters are 1p λ= , 2p φ= , and 3p δα=  , 
the design matrix A  will be given explicitly by the expression: 
 

,0
3 3

b
n X L

F
X×
∂

= =
∂

A  
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1 1 1 1 1

1 1 1 1 1

1 1 1 1 1 1

cos cos cos sin sin sin cos cos
cos sin cos sin cos sin cos cos

cos cos cos sin sin sin sin cos cos sin cos cos

z y z y z
z x z x z

x y x y x y

φ λδα φδα φ λδα φ φ λ
φ λδα φδα φ λδα φ φ λ

φ λδα φ λδα φ λδα φ λδα φ λ φ λ

− + − 
 − − − − + 

+ − + −  

=

−

  

  

   





cos cos cos sin sin sin cos cos
cos sin cos sin cos sin cos cos

cos cos cos sin sin sin sin cos cos sin cos cos

n n n n n

n n n n n
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z y z y z
z x z x z
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φ λδα φδα φ λδα φ φ λ
φ λδα φδα φ λδα φ φ λ

φ λδα φ λδα φ λδα φ λδα φ λ φ λ






+ − 
 − − − − + 

+ − + −  

  

  

   






 
 
 
 
 
 
 
 

            (45) 
Similarly, the design matrix B  is given by: 
 

,0
3 6

b
n n X L

F
L×

∂
= =
∂

B   

 

1

0 sin cos sin 1 0 0 0 0 0 0 0 0

sin 0 cos cos 0 1 0 0 0 0 0 0 0

cos sin cos cos 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 sin cos sin 1 0 0

0 0 0 0 0 0 sin 0 cos cos 0 1 0

0 0 0 0 0 0 cos sin

φδα φ λδα

φδα φ λδα

φ λδα φ λδα

φδα φ λδα

φδα φ λδα

φ λδ

−

−

−

−

−

   
   
   
      

 
 
 
  

 

  

 

  

 

 

cos cos 0 0 0 1 nα φ λδα−

 
 
 
 
 
 
  
  
  
     

            (46) 
 
The closure vector W follows immediately from (44) and will not be given here explicitly. Using 

the same weight matrix as before, after implementing (17), (18), and (19), the results presented 

in Table 5 were obtained. The solution converged after five iterations. Comparing Table 4 to 

Table 5 shows that, as expected, the results are identical to the order of 0.0001 mas, except for 

the signs of the covariances that depend on the angular rotation rate parameter δα which have 

opposite signs. Recall that both rotations are counterclockwise positive but one is a rotation of 

frames (passive rotation) and the other is an active rotation (body rotation).  

 

This difference in sign of these covariances could be succinctly explained as follows. In the 

least-squares solution of model 1, positive counterclockwise rotations around the three axes of 

the IGS frame were assumed. Therefore, the frame was rotated and using (35) the value ofδα

was computed. For clarity, let us introduce now the notation Fδα  where the subindex F indicates 
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“frame rotation.” In the LS solution of model 2 the angular rotation rate around the Euler axis 

was also assumed counterclockwise positive. However, in this particular instance a “rotation of 

vectors” denoted now Vδα was performed instead of a rotation of frames.  

Although both rotations are counterclockwise positive, as explained above, they are opposite in 

sign; in other words a counterclockwise rotation of frames is equal to a negative clockwise 

rotation of frames or, equivalently, a negative counterclockwise rotation of vectors. Therefore, 

for all practical purposes, symbolically one can write: V Fδα δα= −  leading to the following 

conceptual equation:  

v
, 1 , 2

VF

F V

VF

F V

propagation of errors direct c matrix
from LS results MODEL from LS results MODEL

λ δαλ δα

φ δα φ δα

σσ
σ σ

   −    =   
       

−

−


 

 (47) 

 

    The argument elaborated before and the above definition should suffice to explain the reasons 

for the difference in sign of the covariances described in (47). Nevertheless, for completeness a 

more rigorous mathematical derivation follows. Our primary aim is to obtain the v-c matrix 

{ , , }F F Fλ φ δαΣ as a function of the “truth” which it is assumed to be the v-c matrix obtained 

through the rigorous LS process, mainly, { , , }V V Vλ φ δαΣ . 

 
     The functional relationship is this case could be written: 
 

F V

F V

F V

λ λ
φ φ

δα δα







=
=
= − 

          (48) 

 
    Then, one can solve the problem, by simple propagation of errors: 
 

{ } { }, , , ,3 3 3 3F F F V V V

T
λ φ δα λ φ δα× ×

= Σ ΣJ J                                 (49) 

 
    And the required Jacobian matrix is given explicitly by:  
 

1 0 0
( , , ) 0 1 0
( , , )

0 0 1

F F F

V V V

λ φ δα
λ φ δα

 
∂  = =  ∂

 − 




J         (50) 
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Therefore, immediately follows: 
 

2 22

2 2 2

2 2 2

T

V V V V V V V V V VF F F F F

F F F V V V V V V

F V V
sym sym sym

λ λ φ λ δα λ λ φ λ δαλ λ φ λ δα

φ φ δα φ φ δα φ φ δα

δα δα δα

σ σ σ σ σ σσ σ σ

σ σ σ σ σ σ

σ σ σ

    
    
    
    
    
         

−

= = −
 

  

  

J J  (51) 

 
which proves the mathematical statement made in (47). 
 
 

Table 5 Euler Pole parameters with pertinent companion statistics 

Euler Pole and Angular Rates Size and Orientation of Error Ellipse 

λ =94o 05’ 53.6326” ±  8 o 42’ 13.7950” ae = 8o 44’ 6.6903” = 974.0126 (km) 

φ = -45o 25’ 01.3227” ±  6 o 30’ 8.8148” be = 6o 27’ 36.9342” = 718.0544 (km) 
δα = 0.4591 ±  0.0506 (mas/yr) 

eaA = 97 o 13’ 32.5905” 

{ }, ,

75.7567 4.3135 0.0474
4.3135 42.2818 0.0250
0.0474 0.0250 0.0026

λ φ δα

− − 
 = − 
 − 

Σ  (deg2, mas2/yr2) 

{ }, ,

1.0000 0.0762 0.1075
0.0762 1.0000 0.0761
0.1075 0.0761 1.0000

λ φ δα

− − 
 = − 
 − 

ρ  

 

Global rotation effect on the computed plate velocities. 

As a consequence of the discussion elaborated above, it appears that an average global secular 

motion of the axes of the IGS08 frame is induced by the effect of the velocities at each one of the 

231 points defining the frame which is caused by the rotation of the tectonic plates. Assume that 

the definition of the IGS08 frame is not significantly altered in a 50 year period because a 

correction has been applied to the observed coordinates to bring them back to the original epoch 

2005.00. However, the observed velocities that were used to apply this correction may have 

implicit a contribution due to the virtual global secular motion of the frame discussed above and 

depicted in Figure 6. This concept of adding secular contributions to the velocities of points on 
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the earth’s surface is not new. Recently Booker et al. (2014) entertained this idea writing 

explicitly: “The secular motion of any point on the earth will be a combination of GIA, plate 

tectonics, present-day surface mass loading, and other secular effects which we here assume to 

be negligible.” Clearly, the secular motion of the frame itself as described herein could be 

another contribution not to be discarded. Consequently, in our opinion, a part of the GPS-

observed velocities comprises the effect of a secular global rotation of the frame. To graphically 

clarify this argument Figure 7 depicts the three vector velocities involved at any arbitrary point P, 

from which easily follows:   

IGS08 (observed plate rotation vector) = True plate rotation + global rotation    (52) 
 
Therefore: 
 
True plate rotation = IGS08 (observed plate rotation vector) - global rotation   (53) 
 
    For completeness, the IGS08 observed plate rotation velocities available from the IGS08 

SINEX file are depicted in Figure 8. 

 
Fig. 7 Final true plate velocity resulting from the global rotation velocity and IGS08 observed 

plate velocities  

Observed 
IGS08 

velocity 

Global 
velocity 

True plate 
motion velocity 

P

Tv  

Iv  Gv−       

Gv       Iv +
 ( )Gv− Tv=
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Fig. 8 Original GPS-determined IGS08 velocities from SINEX file 
 

 
 

Fig. 9 True plate velocities (Difference between IGS08 velocities and the velocities caused by a 

secular rotation of the frame) 

    Implementing (53) one arrives to the vectors shown in Figure 9. Because the effect of the 

global rotation (Figure 6) is generally opposite in sign to the IGS08 observed velocities the 

combined outcome results in a real plate velocity that is larger than the observed one (Figs. 7 and 

9). In other words, the true velocities at the stations once the global rotation effect is taken into 

consideration are usually larger than the observed ones. 

    To visualize approximately by how much the true plate velocities are larger or smaller than the 

observed values, Table 6 was constructed. All important tectonic plates are named by the two 
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letter acronym conventionally used in the geophysical literature and they are listed alphabetically 

in the first column of the table. The second column indicates the number of stations from the set 

of IGS08 core stations that belong to each particular plate. The 3rd and 4th columns are the 

averages of the east and north IGS08 observed velocity components within each plate, namely:  

, ,
1 1;

m m

e i n i
i i

nI Ie

v v
v v

m m
= == =
∑ ∑

 ( m = number of stations in that plate)     (54) 

    The fifth column is the averaged magnitude of the IGS08 velocity (on the local horizon plane) 

corresponding to each plate computed as follows: 

2 2
, ,

1 1

m m

i
i i

I

I Ie i n iv v v
v

m m
= =

+
= =
∑ ∑

          (55) 

 
    The same logic was applied to compute the values in the 6th, 7th, and 8th columns 

corresponding to the components and magnitudes of the global velocities Gv . 

    The 9th column is the averaged magnitude of the “true” velocity, the difference between the 

IGS08 observed and global based on the following equation: 

True vel. =

2 2
, ,

1 1
( ) ( )

m m

i e i n i
i i

T

v v v
v

m m

δ δ δ
= =

+
= =
∑ ∑

       (56) 

 
where  , i iI Ge ee iv v vδ = − and , i iI Gn nn iv v vδ = −  are the difference between the IGS08 and 

global east and north velocity components at each station within that plate, respectively. The last 

column of Table 6 shows the difference between the average value of the computed true and 

IGS08 velocities for each plate, vT -vI .  Notice that while for the North American plate (45 

stations) the true average value of the true velocity is only 3 mm/yr larger than the IGS08 

observed value, for the European plate (63 stations) the average true value is 1.25 cm/yr larger 

than the IGS08 observed value. The results show a perceptible correlation between the values vT 

-vI and the magnitude of the average velocity for each plate. Summarizing, neglecting the 

contribution of the global induced rotation as postulated in this investigation, according to the 

results of Table 6, may introduce an error in the value of the true plate rotation velocities of the 
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major plates (number of points above 10 stations) between a maximum of 1.25cm/yr (EU plate) 

and a minimum of -1.06cm/yr (PA plate). Consequently, proper adjustment for the effect of the 

secular global rotation should be incorporated into the procedure used to compute GPS-observed 

point displacements to rigorously determine true plate rotation velocities. 

Table 6 The averaged IGS08 and global velocities in each tectonic plate. Final discrepancies 
between averaged “true” and observed velocities at the major plates 

Plate 
ID 

Number 
of 

stations 

IGS velocities (cm/yr) Global velocities (cm/yr) True 
vel.  

Tv  
(cm/yr) 

T Iv v−  
(cm/yr) 

Iev  nI
v  

 

Gev  
Gnv  

 

AF 15  1.84  1.86  2.62  -0.80  -0.94  1.24  3.85 1.23  
AM 5  2.60  -1.21  2.87  -1.31  0.50  1.41  4.28 1.41  
AN 11  0.51  0.02  1.12  -0.21  -0.22  0.89  1.83 0.71  
AR 3  2.98  2.74  4.05  -1.19  -0.72  1.40  5.42 1.37  
AT 2  1.03  1.36  1.84  -1.10  -0.87  1.40  3.14 1.30  
AU 20  2.98  5.38  6.23  -0.61  0.59  0.90  6.04 -0.19  
CA 3  0.80  0.90  1.20  -0.74  -0.10  0.77  1.86 0.66  
EU 63  2.21  1.18  2.65  -0.91  -0.74  1.27  3.90 1.25  
IN 4  4.28  3.53  5.55  -1.18  -0.30  1.22  6.67 1.12  

MA 2  -0.92  0.48  1.04  -1.13  0.77  1.37  0.36 -0.68  
NA 45  -1.39  -0.10  1.74  -0.01  0.09  0.52  2.04 0.30  
ND 2  0.33  1.35  1.44  -0.98  -0.17  0.99  2.06 0.62  
NZ 4  5.92  0.22  5.98  -1.17  0.24  1.20  7.15 1.17  
OK 4  -0.36  -0.69  0.78  -1.16  0.76  1.39  1.68 0.90  
ON 2  2.61  -2.06  3.32  -1.27  0.59  1.41  4.70 1.38  
PA 18  -5.01  2.95  5.90  -0.73  0.85  1.13  4.84 -1.06  
PS 1  -3.67  1.22  3.87  -1.20  0.74  1.41  2.52 -1.35  
SA 14  0.48  1.28  1.60  -1.28  -0.44  1.38  2.59 0.99  
SB 1  2.76  5.29  5.97  -0.93  0.79  1.22  5.82 -0.15  
SO 6  2.17  1.65  2.74  -0.84  -0.82  1.18  3.91 1.17  
SU 1  -2.91  0.64  2.98  -1.20  0.45  1.28  1.72 -1.26  
YA 5  3.13  -1.16  3.33  -1.31  0.43  1.38  4.71 1.38                      

Mean  1.02  1.22  3.13  -0.97  0.07  1.20  3.69 0.56  

Std. 
dev. 

 2.62  1.91  1.80  0.35  0.62  0.24  1.85 0.05  

 

Conclusions 
 
This investigation deliberately attempted to contrast rotations around frame axes with rotations 

of physical geocentric positional vectors with the intention of clarifying some common 

Iv Gv
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misunderstandings that arise when both types of rotations (passive and active) are simultaneously 

combined. It was postulated that the rotation of tectonic plates may induce a global virtual 

rotation of any frame defined by the coordinates of a set of stations located on the moving earth’s 

lithospheric plates. A component of this global secular rotation could be associated with a 

motion of the geodetic frame third axes (secular polar motion). After a least-squares procedure 

was devised and implemented, it was determined that the global rotation of the frame caused by 

displacement of the observing stations due to tectonic plate rotations causes a secular motion of 

the pole whose magnitude and direction is directly related to the number of stations and their 

location on each particular plate (e.g. slow moving vs fast moving). This supposition was 

clarified after results obtained when using five IGS sites close to the original five observatories 

of the now defunct International Latitude Service (ILS), was contrasted with the latest full set of 

stations defining the IGS08 geodetic frame. This one-to-one comparison shows significant 

differences in the two solutions and their resultant v-c matrices. Furthermore, it appears that 

neglecting the contribution of the secular global rotation in the determination of observed plate 

rotation velocities may distort the final interpretation of the plate velocities themselves. The 

outcome of this exercise suggests that the global rotation of the geodetic frame should be 

considered when an accurate determination of plate velocities is intended. GPS technological 

advancements and procedures are currently so accurate that the contribution of the as yet 

concealed secular motion of the frame in the determination of plate velocities should not be 

totally discarded. 
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